FN7450
Rev 4.00
May 9, 2007

The EL9111 and EL9112 are triple channel differential receivers and equalizers. They contains three high speed differential receivers with five programmable poles. The outputs of these pole blocks are then summed into an output buffer. The equalization length is set with the voltage on a single pin. Using the Enable pin on the EL9111 and EL9112, the outputs can be placed into a high impedance state enabling multiple devices to be connected in parallel and used in a multiplexing application.
The gain can be adjusted up or down on each channel by 6 dB using its $\mathrm{V}_{\text {GAIN }}$ control signal. In addition, a further 6 dB of gain can be switched in to provide a matched drive into a cable.

The EL9111 and EL9112 have a bandwidth of 150 MHz and consume just 108 mA on $\pm 5 \mathrm{~V}$ supply. A single input voltage is used to set the compensation levels for the required length of cable.

The EL9111 is a special version of the EL9112 that decodes syncs encoded onto the common modes of three pairs of CAT-5 cable by the EL4543. (Refer to the EL4543 datasheet for details.)

The EL9111 and EL9112 are available in a 28 Ld QFN package and are specified for operation over the full $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.
\qquad
元

Pinouts

Features

- 150MHz -3dB bandwidth
- CAT-5 compensation
- $50 \mathrm{MHz} @ 1000 \mathrm{ft}$
- 125MHz @ 500 ft
- 108mA supply current
- Differential input range 3.2 V
- Common mode input range -4 V to +3.5 V
- $\pm 5 \mathrm{~V}$ supply
- Output to within 1.5 V of supplies
- Available in 28 Ld QFN package
- Pb-free plus anneal available (RoHS compliant)

Applications

- Twisted-pair receiving/equalizer
- KVM (Keyboard/Video/Mouse)
- VGA over twisted-pair
- Security video

Ordering Information

PART NUMBER	PART MARKING	TAPE \& REEL	PACKAGE	PKG. DWG. \#
EL9111IL	9111IL	-	28 Ld QFN	L28.4×5A
EL9111IL-T7	9111IL	7"	28 Ld QFN	L28.4x5A
EL9111IL-T13	9111IL	$13 "$	28 Ld QFN	L28.4×5A
EL9111ILZ (Note)	9111ILZ	-	28 Ld QFN (Pb-free)	L28.4x5A
EL9111ILZ-T7 (Note)	9111ILZ	7"	28 Ld QFN (Pb-free)	L28.4x5A
EL9111ILZ-T13 (Note)	9111ILZ	13 "	28 Ld QFN (Pb-free)	L28.4x5A
EL9112IL	9112IL	-	28 Ld QFN	L28.4x5A
EL9112IL-T7	9112IL	$7 "$	28 Ld QFN	L28.4×5A
EL9112IL-T13	9112IL	13 "	28 Ld QFN	L28.4x5A
EL9112ILZ (Note)	9112ILZ	-	28 Ld QFN (Pb-free)	L28.4x5A
EL9112ILZ-T7 (Note)	9112ILZ	7"	28 Ld QFN (Pb-free)	L28.4x5A
EL9112ILZ-T13 (Note)	9112ILZ	13"	28 Ld QFN (Pb-free)	L28.4x5A

NOTE: Intersil Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate termination finish, which are RoHS compliant and compatible with both SnPb and Pb -free soldering operations. Intersil Pb -free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.

Thermal Information

Storage Temperature . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Ambient Operating Temperature $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Die Junction Temperature . $+150^{\circ} \mathrm{C}$ Pb-free reflow profile . see link below http://www.intersil.com/pbfree/Pb-FreeReflow.asp

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typ values are for information purposes only. Unless otherwise noted, all tests are at the specified temperature and are pulsed tests, therefore: $T_{J}=T_{C}=T_{A}$

Electrical Specifications $\quad \mathrm{V}_{\mathrm{SA}^{+}}=\mathrm{V}_{\mathrm{A}^{+}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SA}^{-}}=\mathrm{V}_{\mathrm{A}^{-}}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, exposed die plate $=-5 \mathrm{~V}$, unless otherwise specified.

PARAMETER	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNIT	
AC PERFORMANCE							
BW	Bandwidth	(See Figure 1)		150		MHz	
SR	Slew Rate	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=-1 \mathrm{~V} \text { to }+1 \mathrm{~V}, \mathrm{~V}_{\mathrm{G}}=0.39, \mathrm{~V}_{\mathrm{C}}=0, \\ & \mathrm{R}_{\mathrm{L}}=75+75 \Omega \end{aligned}$		1.5		kV/ $/ \mathrm{s}$	
THD	Total Harmonic Distortion	$10 \mathrm{MHz} 2 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$ out, $\mathrm{V}_{\mathrm{G}}=1 \mathrm{~V}, \mathrm{X} 2$ gain, $\mathrm{V}_{\mathrm{C}}=0$		-50		dBc	
DC PERFORMANCE							
V (V $\mathrm{V}_{\text {OUT }}$) os	Offset Voltage	X2 = high, no equalization	-110	-10	+78	mV	
$\Delta \mathrm{V}_{\text {OS }}$	Channel-to-Channel Offset Matching	X2 $=$ high, no equalization	-100	0	+100	mV	
INPUT CHARACTERISTICS							
CMIR	Common-mode Input Range			$\begin{aligned} & \hline-4 \text { to } \\ & +3.5 \end{aligned}$		V	
Onoise	Output Noise	$\mathrm{V}_{\mathrm{G}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}}=0 \mathrm{~V}, \mathrm{X} 2=\mathrm{HI} \mathrm{GH},$ $R_{\text {LOAD }}=150 \Omega$, Input 50Ω to $G N D$, 10 MHz		-110		dBm	
CMRR	Common-mode Rejection Ratio	Measured at 10 kHz		-80		dB	
CMRR	Common-mode Rejection Ratio	Measured at 10 MHz		-55		dB	
CMBW	CM Amplifier Bandwidth	10k\|	10pF load		50		MHz
CMSLEW	CM Slew Rate	Measured @ +1V to -1V		100		V/ $/ \mathrm{s}$	
$\mathrm{C}_{\text {INDIFF }}$	Differential Input Capacitance	Capacitance $\mathrm{V}_{\text {INP }}$ to $\mathrm{V}_{\text {INM }}$		600		fF	
$\mathrm{R}_{\text {INDIFF }}$	Differential Input Resistance	Resistance $\mathrm{V}_{\text {INP }}$ to $\mathrm{V}_{\text {INM }}$	1	2.4		$\mathrm{M} \Omega$	
$\mathrm{C}_{\text {INCM }}$	CM Input Capacitance	Capacitance $\mathrm{V}_{\text {INP }}=\mathrm{V}_{\text {INM }}$ to GND		1.2		pF	
$\mathrm{R}_{\text {INCM }}$	CM Input Resistance	Resistance $\mathrm{V}_{\text {INP }}=\mathrm{V}_{\text {INM }}$ to GND		2.8		$\mathrm{M} \Omega$	
$+\mathrm{I}_{\mathrm{N}}$	Positive Input Current	$D C_{\text {BIAS }} @ V_{\text {INP }}=V_{\text {INM }}=0 \mathrm{~V}$		1		$\mu \mathrm{A}$	
${ }_{-1} \mathrm{IN}$	Negative Input Current	DC BIAS $^{\text {@ }} \mathrm{V}_{\text {INP }}=\mathrm{V}_{\text {INM }}=0 \mathrm{~V}$		1		$\mu \mathrm{A}$	
$\mathrm{V}_{\text {INDIFF }}$	Differential Input Range	$\mathrm{V}_{\text {INP }}-\mathrm{V}_{\text {INM }}$ when slope gain falls to 0.9	2.5	3.2		V	
OUTPUT CHARACTERISTICS							
V(V ${ }_{\text {OUT }}$)	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=150 \Omega$		± 3.5		V	
I (V $\mathrm{V}_{\text {OUT }}$)	Output Drive Current	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{~V}_{\mathrm{INP}}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{INM}}=0 \mathrm{~V}, \\ & \mathrm{X} 2=\text { high, } \mathrm{V}_{\mathrm{G}}=0.39 \end{aligned}$	50	60		mA	
$\mathrm{R}\left(\mathrm{V}_{\mathrm{Cm}}\right)$	CM Output Resistance of VCM_R/G/B (EL9112 only)	at 100 kHz		30		Ω	
Gain	Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{C}}=0, \mathrm{~V}_{\mathrm{G}}=0.39, \mathrm{X} 2=5, \mathrm{R}_{\mathrm{L}}= \\ & 150 \Omega \end{aligned}$	0.85	1.0	1.1		

Electrical Specifications $\quad \mathrm{V}_{\mathrm{SA}^{+}}=\mathrm{V}_{\mathrm{A}^{+}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SA}^{-}}=\mathrm{V}_{\mathrm{A}^{-}}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, exposed die plate $=-5 \mathrm{~V}$, unless otherwise specified.

PARAMETER	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNIT
Δ Gain @ DC	Channel-to-Channel Gain Matching	$\begin{aligned} & \mathrm{V}_{\mathrm{C}}=0, \mathrm{~V}_{\mathrm{G}}=0.39, \mathrm{X} 2=5, \\ & \mathrm{R}_{\mathrm{L}}=150 \Omega \end{aligned}$		3	6	\%
Gain @ 15 MHz	Channel-to-Channel Gain Matching	$\begin{aligned} & \mathrm{V}_{\mathrm{C}}=0.6, \mathrm{~V}_{\mathrm{G}}=0.39, \mathrm{X} 2=5, \\ & \mathrm{R}_{\mathrm{L}}=150 \Omega, \text { Frequency }=15 \mathrm{MHz} \end{aligned}$		3	10	\%
V (SYNC) HI	High Level output on V/HOUT (EL9111 only)		$\mathrm{V}\left(\mathrm{V}_{\mathrm{SP}}\right)-0.1 \mathrm{~V}$		$\mathrm{V}\left(\mathrm{V}_{\mathrm{SP}}\right)$	
V(SYNC)LO	Low Level output on $\mathrm{V} / \mathrm{H}_{\text {OUT }}$ (EL9111 only)		0		$\mathrm{V}_{\text {SYNCREF }}+0.1 \mathrm{~V}$	
SUPPLY						
ISON	Supply Current per Channel	$\mathrm{V}_{\text {ENBL }}=5, \mathrm{~V}_{\text {INM }}=0$	32	36	39	mA
ISOFF	Supply Current per Channel	$\mathrm{V}_{\text {ENBL }}=0, \mathrm{~V}_{\text {INM }}=0$	0.2		0.4	mA
PSRR	Power Supply Rejection Ratio	DC to $100 \mathrm{kHz}, \pm 5 \mathrm{~V}$ supply		65		dB
LOGIC CONTROL PINS (ENABLE, X2)						
V_{HI}	Logic High Level	$V_{\text {IN }}-V_{\text {LOGIC }}$ ref for guaranteed high level	1.35			V
VLow	Logic Low Level	$V_{\text {IN }}-V_{\text {LOGIC }}$ reffor guaranteed low level			0.8	V
L'OGICH	Logic High Input Current	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{~V}_{\text {LOGIC }}=0 \mathrm{~V}$			50	$\mu \mathrm{A}$
logicl	Logic Low Input Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{~V}_{\text {LOGIC }}=0 \mathrm{~V}$			15	$\mu \mathrm{A}$

Pin Descriptions

PIN NUMBER	EL9111IL PIN NAME	$\begin{gathered} \text { EL9111IL } \\ \text { PIN FUNCTION } \end{gathered}$	EL9112IL PIN NAME	$\begin{gathered} \text { EL9112IL } \\ \text { PIN FUNCTION } \end{gathered}$
1	VSMO_B	-5 V to blue output buffer	VSMO_B	-5 V to blue output buffer
2	VOUT_B	Blue output voltage referenced to 0 V pin	VOUT_B	Blue output voltage referenced to 0 V pin
3	VSPO_B	+5 V to blue output buffer	VSPO_B	+5 V to blue output buffer
4	VSPO_G	+5 V to green output buffer	VSPO_G	+5 V to green output buffer
5	VOUT_G	Green output voltage referenced to 0 V pin	VOUT_G	Green output voltage referenced to 0 V pin
6	VSMO_G	-5 V to green output buffer	VSMO_G	-5 V to green output buffer
7	VSMO_R	-5 V to red output buffer	VSMO_R	-5 V to red output buffer
8	VOUT_R	Red output voltage referenced to 0 V pin	VOUT_R	Red output voltage referenced to 0 V pin
9	VSPO_R	+5 V to red output buffer	VSPO_R	+5 V to red output buffer
10	VCTRL	Equalization control voltage (0 V to 1V)	VCTRL	Equalization control voltage (0 V to 1V)
11	VREF	Reference voltage for logic signals, VCTRL and VGAIN pins	VREF	Reference voltage for logic signals, $\mathrm{V}_{\mathrm{CTRL}}$ and $V_{\text {GAIN }}$ pins
12	VGAIN_R	Red channel gain voltage (0 V to 1 V)	VGAIN_R	Red channel gain voltage (0 V to 1 V)
13	VGAIN_G	Green channel gain voltage (0 V to 1 V)	VGAIN_G	Green channel gain voltage (0 V to 1V)
14	VGAIN_B	Blue channel gain voltage (0 V to 1 V)	VGAIN_B	Blue channel gain voltage (0 V to 1 V)
15	VSM	-5 V to core of chip	VSM	-5 V to core of chip
16	VINP_R	Red positive differential input	VINP_R	Red positive differential input
17	VINM_R	Red negative differential input	VINM_R	Red negative differential input
18	VINP_G	Green positive differential input	VINP_G	Green positive differential input
19	VINM_G	Green negative differential input	VINM_G	Green negative differential input
20	VINP_B	Blue positive differential input	VINP_B	Blue positive differential input

Pin Descriptions (Continued)

PIN NUMBER	EL9111IL PIN NAME	$\begin{gathered} \text { EL9111IL } \\ \text { PIN FUNCTION } \end{gathered}$	EL9112IL PIN NAME	EL9112IL PIN FUNCTION
21	VINM_B	Blue negative differential input	VINM_B	Blue negative differential input
22	VSP	+5 V to core of chip	VSP	+5 V to core of chip
23	HOUT	Decoded Horizontal sync referenced to SYNCREF	VCM_R	Red common-mode voltage at inputs
24	VOUT	Decoded Vertical sync referenced to SYNCREF	VCM_G	Green common-mode voltage at inputs
25	SYNCREF	Reference level for $\mathrm{H}_{\text {OUT }}$ and $\mathrm{V}_{\text {OUT }}$ logic outputs	VCM_B	Blue common-mode voltage at inputs
26	X2	Logic signal for $\times 1 / \times 2$ output gain setting	X2	Logic signal for $\times 1 / \times 2$ output gain setting
27	ENABLE	Chip enable logic signal	ENABLE	Chip enable logic signal
28	OV	0 V reference for output voltage	OV	OV reference for output voltage
Thermal Pad		Must be connected to -5 V		

Typical Performance Curves

FIGURE 1. FREQUENCY RESPONSE OF ALL CHANNELS
FIGURE 2. GAIN vs FREQUENCY ALL CHANNELS

FIGURE 3. GAIN vs FREQUENCY FOR VARIOUS $V_{C T R L}$

FIGURE 4. GAIN vs FREQUENCY FOR VARIOUS VCTRL AND $V_{\text {GAIN }}$

Typical Performance Curves (Continued)

FIGURE 5. GAIN vs FREQUENCY FOR VARIOUS VCTRL AND CABLE LENGTHS

FIGURE 8. OUTPUT NOISE

FIGURE 9. OFFSET vs $\mathrm{V}_{\text {CTRL }}$

FIGURE 10. DC GAIN vs VGAIN

Typical Performance Curves (Continued)

FIGURE 14. (-)PSRR vs FREQUENCY

FIGURE 16. BLUE CROSSTALK

Typical Performance Curves (Continued)

Typical Performance Curves (Continued)

FIGURE 23. TOTAL HARMONIC DISTORTION

FIGURE 24. PACKAGE POWER DISSIPATION vs AMBIENT TEMPERATURE

FIGURE 25. PACKAGE POWER DISSIPATION vs AMBIENT TEMPERATURE

Applications Information

Logic Control

The EL9112 has two logical input pins, Chip Enable (ENABLE) and Switch Gain (X2). The logic circuits all have a nominal threshold of 1.1 V above the potential of the logic reference pin (VREF). In most applications it is expected that this chip will run from a $+5 \mathrm{~V}, 0 \mathrm{~V},-5 \mathrm{~V}$ supply system with logic being run between 0 V and +5 V . In this case the logic reference voltage should be tied to the 0 V supply. If the logic is referenced to the -5 V rail, then the logic reference should be connected to -5 V . The logic reference pin sources about $60 \mu \mathrm{~A}$ and this will rise to about $200 \mu \mathrm{~A}$ if all inputs are true (positive).
The logic inputs all source up to $10 \mu \mathrm{~A}$ when they are held at the logic reference level. When taken positive, the inputs sink a current dependent on the high level, up to $50 \mu \mathrm{~A}$ for a high level 5 V above the reference level.

The logic inputs, if not used, should be tied to the appropriate voltage in order to define their state.

Control Reference and Signal Reference

Analog control voltages are required to set the equalizer and contrast levels. These signals are voltages in the range $0 \mathrm{~V}-1 \mathrm{~V}$, which are referenced to the control reference pin. It is expected that the control reference pin will be tied to 0 V and the control voltage will vary from 0 V to 1 V . It is; however, acceptable to connect the control reference to any potential between -5 V and OV to which the control voltages are referenced.

The control voltage pins themselves are high impedance. The control reference pin will source between $0 \mu \mathrm{~A}$ and $200 \mu \mathrm{~A}$ depending on the control voltages being applied.
The control reference and logic reference effectively remove the need for the 0 V rail and operation from $\pm 5 \mathrm{~V}$ (or 0 V and 10 V) only is possible. However we still need a further reference to define the 0 V level of the single ended output signal. The reference for the output signal is provided by the 0 V pin. The output stage cannot pull fully up or down to either supply so it is important that the reference is positioned to allow full output swing. The 0 V reference should be tied to a 'quiet ground' as any noise on this pin is transferred directly to the output. The 0 V pin is a high impedance pin and draws DC bias currents of a few $\mu \mathrm{A}$ and similar levels of $A C$ current.

Equalizing

When transmitting a signal across a twisted pair cable, the high frequency (above 1 MHz) information is attenuated more significantly than the information at low frequencies. The attenuation is predominantly due to resistive skin effect losses and has a loss curve which depends on the resistivity of the conductor, surface condition of the wire and the wire diameter. For the range of high performance twisted pair cables based on 24awg copper wire (CAT-5 etc.) these parameters vary only a little between cable types, and in general cables exhibit the same frequency dependence of loss. (The lower loss cables
can be compared with somewhat longer lengths of their more lossy brothers.) This enables a single equalizing law equation to be built into the EL9112.

With a control voltage applied between pins VCTRL and VREF, the frequency dependence of the equalization is shown in Figure 8. The equalization matches the cable loss up to about 100 MHz . Above this, system gain is rolled off rapidly to reduce noise bandwidth. The roll-off occurs more rapidly for higher control voltages, thus the system (cable + equalizer) bandwidth reduces as the cable length increases. This is desirable, as noise becomes an increasing issue as the equalization increases.

Contrast

By varying the voltage between pins VGAIN and VREF, the gain of the signal path can be changed in the ratio 4:1. The gain change varies almost linearly with control voltage. For normal operation it is anticipated the X 2 mode will be selected and the output load will be back matched. A unity gain to the output load will then be achieved with a gain control voltage of about 0.35 V . This allows the gain to be trimmed up or down by $6 d B$ to compensate for any gain/loss errors that affect the contrast of the video signal. Figure 26 shows an example plot of the gain to the load with gain control voltage.

Common Mode Sync Decoding

The EL9111 features common mode decoding to allow horizontal and vertical synchronization information, which has been encoded on the three differential inputs by the EL4543, to be decoded. The entire RGB video signal can therefore be transmitted, along with the associated synchronization information, by using just three twisted pairs.

Decoding is based on the EL4543 encoding scheme, as described in Figure 27 and Table 1. The scheme is a threelevel system, which has been designed such that the sum of the common mode voltages results in a fixed average DC level with no AC content. This eliminates the effect of EMI radiation into the common mode signals along the twisted pairs of the cable.

The common mode voltages are initially extracted by the EL9111 from the three input pairs. These are then passed to an internal logic decoding block to provide Horizontal and Vertical sync output signals ($\mathrm{H}_{\text {OUT }}$ and $\mathrm{V}_{\mathrm{OUT}}$).

FIGURE 27. H AND V SYNCS ENCODED

TABLE 1. H AND V SYNC DECODING

RED CM	GREEN CM	BLUE CM	H $_{\text {SYNC }}$	$\mathbf{V}_{\text {SYNC }}$
Mid	High	Low	Low	Low
High	Low	Mid	Low	High
Low	High	Mid	High	Low
Mid	Low	High	High	High

NOTE: Level 'Mid' is halfway between 'High' and 'Low'

Sync Ref

The Sync Ref pin is the reference level for the logic low of the sync outputs. It can be tied to 0 V or -5 V , but for typical operation, the Sync Ref pin would tie to OV. The Sync output logic low level approaches Sync Ref within $V_{\text {CESAT; }}$; the logic high will approach V_{SP} within $\mathrm{V}_{\text {CESAT }}$. The EL9111 operating with a 10 V single supply and Sync Ref at ground will cause the HOUT and VOUT pins to go from ground to V_{SP}, a 10 V swing. This is too large a voltage for logic inputs, so an output voltage divider of $1 \mathrm{k} \Omega$ series from the outputs with $1 \mathrm{k} \Omega$ to ground will reduce the output logic levels to 0 V and 5 V . Different logic levels may require different output divider ratios.
The Sync Ref is intended to sink all the switching currents as transitions to logic low are made. This prevents switching signals crosstalk to the main chip 0 V line, as well as adding the flexibility of referencing to -5 V . Thus, the logic output buffer does use Sync Ref as its negative supply. The Sync Ref pin is connected to the analog -5 V or analog ground as needed and is a separate pin to prevent noise coupling in the chip.

EL9111 with Single Ended Coax Input

The EL9111 is designed to use twisted pair cat 5 cable input with sync encoded as differential CMV on the RGB pairs. Coax cable inputs may be used with a few changes and limitations. Coax cable cannot have sync encoded as CMV, so the coax shields are grounded along with the EL9111 RGB minus inputs. The coax center conductor is terminated with 75Ω and connected to the RGB plus inputs. The result is half the video signal will be seen as CMV by the sync decoding circuit that decodes the video as sync. This causes noise on the RGB outputs. The noise may be eliminated by connecting the Sync Ref pin to V_{SP} to disable the Sync Outputs which now typically go to about 3 V with $+5 \mathrm{~V}_{\mathrm{SP}}$.

Power Dissipation

The EL9111 and EL9112 are designed to operate with $\pm 5 \mathrm{~V}$ supply voltages. The supply currents are tested in production and guaranteed to be less than 39 mA per channel. Operating at $\pm 5 \mathrm{~V}$ power supply, the total power dissipation in Equation 1 is:
$\mathrm{PD}_{\text {MAX }}=3 \times\left\lceil 2 \times \mathrm{V}_{\mathrm{S}} \times \mathrm{I}_{\text {SMAX }}+\left(\mathrm{V}_{\mathrm{S}}-\mathrm{V}_{\text {OUTMAX }}\right) \times \frac{\mathrm{V}_{\text {OUTMAX }}}{R_{\mathrm{L}}}\right\rceil$
where:

- $\mathrm{PD}_{\mathrm{MAX}}=$ Maximum power dissipation
- $\mathrm{V}_{\mathrm{S}}=$ Supply voltage $=5 \mathrm{~V}$
- $I_{\mathrm{MAX}}=$ Maximum quiescent supply current per channel $=39 \mathrm{~mA}$
- $\mathrm{V}_{\text {OUTMAX }}=$ Maximum output voltage swing of the application $=2 \mathrm{~V}$
$R_{L}=$ Load resistance $=150 \Omega$
$\mathrm{PD}_{\text {MAX }}=1.29 \mathrm{~W}$
θ_{JA} required for long term reliable operation can be calculated. This is done using the equation:
$\theta_{J A}=\frac{T_{J}-T_{A}}{P D}=+50.4^{\circ} \mathrm{C} / \mathrm{W}$
where:
T_{J} is the maximum junction temperature $\left(+150^{\circ} \mathrm{C}\right)$
T_{A} is the maximum ambient temperature $\left(+85^{\circ} \mathrm{C}\right)$
For a QFN 20 Ld package in a properly layout PCB heatsinking copper area, $+37^{\circ} \mathrm{C} / \mathrm{W} \theta_{\mathrm{JA}}$ thermal resistance can be achieved. To disperse the heat, the bottom heatspreader must be soldered to the PCB. Heat flows through the heatspreader to the circuit board copper then spreads and converts to air. Thus the PCB copper plane becomes the heatsink. This has proven to be a very effective technique. "See Technical Bulletin 389 (http://www.intersil.com/data/tb/TB389.pdf) for additional QFN PCB layout information."

© Copyright Intersil Americas LLC 2005-2007. All Rights Reserved. All trademarks and registered trademarks are the property of their respective owners.

For additional products, see www.intersil.com/en/products.html modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

Package Outline Drawing

L28.4x5A

28 LEAD QUAD FLAT NO-LEAD PLASTIC PACKAGE
Rev 1, 10/06

